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Abstract: Delayed-onset muscle soreness (DOMS) is associated with exercise-induced muscle damage
and inflammation, which is mainly caused by prolonged eccentric exercise in humans. Triptolide, an
extract from the Chinese herb Tripterygium wilfordii Hook F, has been used for treating autoimmune
and inflammatory diseases in clinical practice. However, whether triptolide attenuates acute muscle
damage is still unclear. Here, we examined the effect of triptolide on carrageenan-induced DOMS in
rats. Rats were injected with 3% of carrageenan into their muscles to induce acute left gastrocnemius
muscular damage, and triptolide treatment attenuated carrageenan-induced acute muscular damage
without affecting hepatic function. Triptolide can significantly decrease lipid hydroperoxide and
nitric oxide (NO) levels, proinflammatory cytokine production, and the activation of nuclear factor
(NF)-kB, as well as increase a reduced form of glutathione levels in carrageenan-treated rat muscles.
At the enzyme levels, triptolide reduced the inducible nitric oxide synthase (iNOS) expression and
muscular myeloperoxidase (MPO) activity in carrageenan-treated DOMS rats. In conclusion, we
show that triptolide can attenuate muscular damage by inhibiting muscular oxidative stress and
inflammation in a carrageenan-induced rat DOMS model.

Keywords: delayed-onset muscle soreness; triptolide; oxidative stress; inflammation; nitric oxide;
myeloperoxidase

1. Introduction

Delayed-onset muscle soreness (DOMS) is a symptom of prolonged eccentric exercise-
associated muscle injury and inflammation [1]. In DOMS, muscle fiber microtrauma leads to
an adaption of muscle to prevent damage, thereby causing soreness [1]. DOMS is commonly
observed in athletes and people who are undergoing eccentric exercise [1]. Emerging
evidence indicates that oxidative stress plays a central role in the initiation and perpetuation
of inflammatory responses, which are involved in the pathophysiological changes of various
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diseases, including cardiovascular disease, diabetes, and cancers [2]. Over-production of
free radicals (superoxide anions, hydroxyl radicals, and nitric oxide) and reduced levels
of circulating antioxidants (reduced form of glutathione, GSH) predominantly account
for muscular oxidative stress [3]. In order to develop effective therapeutics for DOMS,
oxidative stress and inflammation in DOMS should be considered.

At the molecular level, several oxidative stress-associated proteins may be involved
in this distinct process. Inducible NO synthase (iNOS)-produced nitric oxide (NO) is one
of the reactive nitrogen species that has been reported to be involved in the pathogenesis
of both oxidative stress and inflammation [4,5]. Furthermore, NO enhances the activity of
nuclear factor (NF)-kB [6,7] and the generation of pro-inflammatory cytokines, including
tumor necrosis factor-α (TNF)-α and interleukin (IL)-1β [8,9]. Myeloperoxidase (MPO), a
highly expressed protein in neutrophils, plays a primary role in leukocyte-mediated host
defenses [10]. MPO is known to contribute to oxidative damages in many inflammatory
disorders [11,12] and can increase iNOS activity by blocking NO-exerted feedback action
on iNOS [13]. Up to the present, these molecules have not been studied together in
DOMS before.

Tripterygium wilfordii Hook F (TWHF), a traditional Chinese herb, has a long his-
tory of being used to treat a variety of inflammatory disorders that dates back many
centuries [14–16]. Triptolide, as well as extract from TWHF, have been tested in various
models of inflammatory and autoimmune disorders, including nephritis, asthma, arthri-
tis, and neurodegenerative disorders, and they have been found to modulate a variety
of inflammatory mediators [17]. For instance, triptolide can exert its anti-hepatofibrotic
effects in animal models of liver fibrosis and can inhibit the NF-κB signaling pathway in
hepatic stellate cells [18]. Wang et al. also demonstrated the anti-inflammatory effects of
triptolide through inhibiting the NF-κB signaling pathway in an LPS-induced acute lung
injury murine model [19]. Triptolide can inhibit superoxide anion and reactive oxygen
species’ (ROS) production in murine peritoneal macrophages by down-regulating NF-κB
activation [20,21] and suppress ROS generation and p38 mitogen-activated protein kinase
(MAPK) activation in C5b-9-induced podocytes [22]. However, the application of triptolide
in acute muscle damage remains elusive. The aim of the present study is to examine the
therapeutic effect of triptolide on a rat model of acute muscle damage and examine its
possible mechanism.

2. Materials and Methods
2.1. DOMS Animal Model

Male Sprague Dawley rats were obtained from and housed in our institution’s labora-
tory animal center. They were housed individually in a room with a 12/12-h light/dark
cycle and with central air conditioning (25 ◦C, 70% humidity). The animal care and experi-
mental protocols were in accordance with institutional guidelines, which were approved
by the National Cheng Kung University Animal Center (Approval number: 105035). For
inducing acute muscular damage in rats, carrageenan, purchased from Sigma (Cat.#C1013,
St Louis, MO, USA), was injected in the amount of 100 µL of 3% carrageenan into rats’ left
gastrocnemius muscle under isoflurane (3%) anesthesia, as published previously [23].

2.2. In Vivo Study Design

Thirty rats were divided into five groups. In the normal (N) group, rats received
100 µL of saline by gastrocnemius muscle injection into the left limbs and 500 µL of saline
by intraperitoneal (i.p.) injection; in the control (C) group, rats received 100 µL of 3%
carrageenan (Sigma-Aldrich, St Louis, MO, USA) by gastrocnemius muscle injection into
the left limbs and 500 µL of saline by i.p. injection; and in the CT30, 100, and 300 groups,
rats received 100 µL of 3% carrageenan by gastrocnemius muscle injection into the left
limbs and 500 µL of triptolide (Cat.#T3652, Sigma-Aldrich, St Louis, MO, 30, 100, and
300 mg/kg) by i.p. injection. Six hours after the above treatments, a pan behavior test was
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performed in each rat. After this, rats were euthanized, and their serum and muscle tissue
samples were collected for further analyses.

2.3. Pain Behavior Test

Rat muscle pain was assessed using an incapacitance meter (IITC, Inc., Woodland
Hills, CA, USA), which is a behavioral analysis assay that measures weight bearing on the
hindlimbs while the animal is in an induced rearing posture. In brief, it is an in-capacitance
meter that consists of two scales and a specialized cage to encourage a rearing posture.
Hindlimb weight bearing was tracked and recorded over a 3 min period. These data were
transformed into weight distribution by dividing the weight on the right limb by the total
weight of both hindlimbs [24].

2.4. Serum Biochemical Analysis

Serum biochemical changes, including lactate dehydrogenase (LDH), creatine phos-
phokinase (CPK), glutamate oxaloacetate transaminase (GOT), and glutamate-pyruvate
transaminase (GPT), were assessed by a serum biochemical analyzer (DRI-CHEM 3500s;
Fujifilm, Kanagawa, Japan).

2.5. Western Blot

We used a nuclear extraction kit (Cat.#NXTRACT, Sigma, Inc., St. Louis, MO) to
separate nuclear and cytosolic proteins in the muscle tissues. Fifty micrograms of proteins
were used to perform sodium dodecyl sulfate polyacrylamide gel electrophoresis, and the
blot was obtained in transferred nitrocellulose sheets (Cat.#NBA085B001EA, NEN Life
Science Products, Inc., Boston, MA, USA). After blocking in 5% non-fat skim milk, NF-kB
p65 (Cat.#SC-8008, Santa Cruz Biotechnology, Dallas, TX, USA), phospho-IkB (Serine 32,
Cat.#SC -8404, Santa Cruz Biotechnology, Dallas, TX), iNOS (Cat.#ab283655, Abcam, Cam-
bridge, UK), and GAPDH (Cat.#32233, Santa Cruz Biotechnology, Dallas, TX, USA) anti-
bodies (dilution 1:1500) were added and incubated at 4 ◦C overnight. Then, secondary anti-
bodies conjugated with alkaline phosphatase (dilution 1:2000) (Cat.#111-055-003 and 111-
055-146, Jackson ImmunoResearch Laboratories, Inc., Philadelphia, PA, USA) were added
onto the blots. Immunoblots were observed after bromochloroindolyl phosphate/nitroblue
tetrazolium solution was added (Cat.#5410-0013, Kirkegaard and Perry Laboratories, Inc.,
Baltimore, MD, USA) [25].

2.6. Measuring Lipid Peroxidation Level in Muscle

Muscle tissues were homogenized in Milli-Q water. Tissue homogenates (500 µL) were
centrifuged at 2500× g for 10 min at 4 ◦C. Five hundred µL of supernatant was sent for
lipid hydroperoxide measurement using a kit (Cat.#ab133085, Lipid Hydroperoxide Assay
Kit, Abcam, Cambridge, UK), according to the manufacturer’s instruction.

2.7. Measuring Muscular Glutathione (GSH) Level

Muscle tissues were homogenized in 10% of ice-cold trichloroacetic acid and then
centrifuged at 3000 rpm for 10 min. Supernatant (500 µL) was added to 2 mL of 0.3 M
Na2HPO4 solution. After adding 200 µL of dithiobisnitrobenzoate solution, the absorbance
at 412 nm was measured immediately, as described previously [26].

2.8. Measuring Pro-Inflammatory Cytokines in Muscles

Levels of TNF-α and IL-1β in muscle tissue homogenates were measured using
enzyme-linked immunosorbent assay (ELISA) kits (Cat.#DY510 and DY501, DuoSet;
R&D Systems Inc., Minneapolis, MN, USA), according to the manufacturer’s instruction.

2.9. Measuring Nitrite Concentration

The amounts of nitrite in muscle tissue were measured by incubating 100 µL of
tissue homogenates with 100 µL of Griess solution and using a spectrophotometer at an
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absorbance of 550 nm. Further, sodium nitrite was prepared as the standard solution, as
described previously [27].

2.10. Histological Evaluation of Muscular Injury

Muscle tissues were fixed in 4% formaldehyde. Tissue fragments were washed in
phosphate buffer, dehydrated in graded concentrations of ethanol, and then embedded
in paraffin. From each tissue, 4 µm sections were prepared and stained with hematoxylin
and eosin to evaluate muscular morphology. The inflammation score was evaluated as
published previously, where 0: none; 1: giant cells, lymphocytes, plasma cells; 2: giant cells,
eosinophil, neutrophil; 3: many inflammatory cells [28].

2.11. Measuring Hepatic MPO Activity

Muscle tissues were homogenized in 20 mM phosphate buffer (pH 7.4) and then
centrifuged (13,000 rpm for 10 min at 4 ◦C). The pellet was resuspended in 1 mL of 50 mM
phosphate buffer containing 0.5% hexadecyltrimethylammonium bromide. The suspension
was subjected to four cycles of freezing and thawing, and then centrifuged (13,000 rpm for
5 min at 4 ◦C). Supernatant (0.5 mL) was mixed with tetramethylbenzidine (0.5 mL) and
incubated for 1 min. The reaction was stopped by adding 0.5 mL of 2 N H2SO4. The spec-
trophotometer was then used for measurement at an absorbance of 405 nm. MPO activity
is shown as the absorbance at 405 nm/min/mg protein, as published previously [29].

2.12. Statistical Analysis

Data are means ± standard deviation (SD). Group comparisons were performed using
SPSS statistical software (SPSS Institute, Chicago, IL, USA). One-way ANOVA followed by
Dunnett’s multiple comparison tests was used for among-group comparison. Statistical
significance was set at a p value less than 0.05.

3. Results
3.1. Triptolide Reduces Pain, Serum LDH and CPK Levels without Affecting Hepatic Function in
the DOMS Rat Model

To examine the effects of triptolide on muscle damage and hepatic function, serum
LDH, CPK, GOT, and GPT levels were determined in carrageenan-treated rats. Carrageenan
increased serum LDH (Figure 1A) and CPK (Figure 1B) levels, whereas triptolide signifi-
cantly decreased their levels at a dose of 100 or 300 mg/kg compared with the carrageenan
control group. However, neither carrageenan nor triptolide altered the levels of GOT
(Figure 1C) and GPT (Figure 1D). In addition, carrageenan decreased the percentage of
weight bearing in rats, whereas triptolide significantly increased this at a dose of 300 mg/kg
compared with the C group (Figure 2).
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Figure 1. Effects of triptolide on serum biochemical changes. Rats were randomly divided into five
groups. In the normal group (N), rats received 100 µL of saline by intramuscular (i.m.) and 500 µL
of saline by intraperitoneal (i.p.) injections. In the carrageenan group (C), rats received 100 µL of
3% carrageenan (i.m.) and 500 µL of saline (i.p.). In the carrageenan and triptolide co-treatment
groups (CT30, 100, 300), rats received 100 µL of 3% carrageenan (i.m.) and 500 µL of triptolide (30,
100, and 300 mg/kg, respectively) (i.p.). Serum LDH (A), CPK (B), GOT (C), and GPT (D) levels were
measured 6 h after saline or carrageenan administration by a serum biochemical analyzer. Data are
the means ± standard deviation (SD) (n = 6). * p < 0.05 compared with N group; # p < 0.05 compared
with C group.
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Figure 2. Effects of triptolide on pain levels. Rats were divided into three groups. In the N group,
rats received 100 µL of saline (i.m.) and 500 µL of saline (i.p.). In the C group, rats received 100 µL
of 3% carrageenan (i.m.) and 500 µL of saline (i.p.). In the CT300 group, rats received 100 µL
of 3% carrageenan (i.m.) and 500 µL of triptolide (300 mg/kg) (i.p.). Animal pain assessment
was conducted 6 h after saline or carrageenan administration. Percentage of weight bearing was
normalized by the weight on the right limb divided by the total weights of the two hindlimbs Data are
the means ± standard deviation (SD) (n = 6). * p < 0.05 compared with N group; # p < 0.05 compared
with C group.

3.2. Triptolide Suppresses NO, iNOS, Reactive Nitrogen Species (RNS), and MPO Expression and
Oxidative Stress in the DOMS Rat Model

To examine the involvement of reactive nitrogen species (RNS) in triptolide-exerted
muscular protection, NO levels were determined in carrageenan-treated rats. Carrageenan
significantly increased muscular NO concentration, whereas triptolide at a dose of 300
mg/kg decreased it compared with the carrageenan control group (Figure 3A). In addition,
carrageenan increased the expression of iNOS, and triptolide at a dose of 300 mg/kg signif-
icantly decreased this when compared with the carrageenan control groups (Figure 3B). To
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assess the role of MPO in triptolide-associated anti-oxidative effects against carrageenan,
muscular MPO activity was determined. Carrageenan significantly increased the activity of
muscular MPO compared with the normal group. Triptolide at doses of 100 and 300 mg/kg
significantly reduced the MPO activities compared with the carrageenan control group
(Figure 3C).
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Figure 3. Effects of triptolide on muscular nitric oxide (NO) level, myeloperoxidase (MPO) activity,
iNOS, lipid hydroperoxide, and glutathione (GSH) expression. Rats were divided into five groups. In
group I (N group), rats received 100 µL of saline (i.m.) and 500 µL of saline (i.p.); group II (C group)
rats received 100 µL of 3% carrageenan (i.m.) and 500 µL of saline (i.p.); and groups III-V received
100 µL of 3% carrageenan (i.m.) and 500 µL of triptolide (30, 100, and 300 mg/kg, respectively) (i.p.).
Muscular NO production (A), iNOS (B), MPO (C), lipid hydroperoxide (D), and GSH (E) expression
levels were determined 6 h after saline or carrageenan administration. Data are means ± standard
deviation (SD) (n = 6). * p < 0.05 compared with N group; # p < 0.05 compared with C group.

To examine the involvement of oxidative stress in triptolide-treated DOMS rats, mus-
cular lipid hydroperoxide and GSH levels were determined. Carrageenan increased lipid
hydroperoxide but decreased GSH levels in carrageenan-treated muscles compared with
normal controls; however, triptolide significantly reversed these patterns (Figure 3D,E).

3.3. Triptolide Decreases Expression Levels of TNF-α, IL-1β, Nuclear NF-kB, and Leukocyte
Infiltration in the DOMS Rat Model

To examine the effect of triptolide on carrageenan-induced muscular inflammation,
muscular pro-inflammatory cytokine levels and the expressions of NF-kB and IkB were
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determined. Carrageenan significantly increased muscular TNF-α (Figure 4A) and IL-1β
(Figure 4B) levels compared with the normal group; however, triptolide significantly at-
tenuated carrageenan-induced pro-inflammatory cytokine expressions at doses of 100 and
300 mg/kg compared with those in the carrageenan-treated group (Figure 4A,B). Further-
more, both nuclear NF-kB (Figure 4C) and p-IkB (Figure 4D) expressions were increased
compared with the normal group, whereas triptolide significantly reduced these expres-
sions at doses of 100 and 300 mg/kg compared with the carrageenan control groups
(Figure 4C,D). In the histological examination, increased inflammatory cell infiltration into
muscles was observed in the carrageenan control group (Figure 5B); however, mild infiltra-
tion was found in muscle tissues from rats treated with 30 (Figure 5C) and 100 (Figure 5D)
mg/kg of triptolide. Very little inflammatory cell filtration was found in the muscle tissues
from the normal group (Figure 5A) and the group treated with 300 mg/kg of triptolide
(Figure 5E). The groups treated with 100 and 300 mg/kg of triptolide had significantly
lower inflammation scores than the carrageenan control group (Figure 5F).
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Figure 4. Effects of triptolide on muscular TNF-α, IL-1β, phospho-IkB (p-IkB), and nuclear NF-kB
expression. Rats were divided into five groups of six. Group I (N group) rats received 100 µL of saline
(i.m.) and 500 µL of saline (i.p.); group II (C group) rats received 100 µL of 3% carrageenan (i.m.)
and 500 µL of saline (i.p.); and groups III-V received 100 µL of 3% carrageenan (i.m.) and 500 µL of
triptolide (30, 100, and 300 mg/kg, respectively) (i.p.). Muscular TNF-α (A), IL-1β (B), p-IkB (C),
and nuclear NF-kB (D) were determined 6 h after saline or carrageenan administration. Data are
means ± standard deviation (SD) (n = 6). * p < 0.05 compared with N group; # p < 0.05 compared
with C group.
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patic function in a DOMS rat model. Triptolide decreased muscular proinflammatory cy-
tokine release and neutrophil infiltration. Triptolide can also reduce muscular oxidative 
stress, NO production, and iNOS expression in carrageenan-treated rat muscles. Further-
more, triptolide inhibits the activation of NF-ĸB and muscular MPO activity. We sug-
gested that triptolide could protect carrageenan-induced muscles from oxidative stress-
induced damage and inactivate NF-ĸB-mediated proinflammatory cytokine expression. 

As a pain-producing stimulus, carrageenan, an extract from seaweed, has been 
widely used in assessing inflammatory pain in various animal models. It induces gas-
trocnemius injury that is recognized as a simplified model of muscle inflammation char-
acterized by delayed-onset muscle soreness, a reduction in grip force, and pain [30]. In the 
present study, we used intramuscular injections of carrageenan to produce muscular in-
flammation for mimicking DOMS in rodents. 

Inflammation and oxidative stress have been implicated in the pathogenesis and de-
velopment of various acute muscle damages [31,32]. Carrageenan has been shown to elicit 
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Figure 5. Effect of triptolide on histological changes in carrageenan-treated rats. Rats were divided
into five groups of six. Group I (N group) rats received 100 µL of saline (i.m.) and 500 µL of saline
(i.p.); group II (C group) rats received 100 µL of 3% carrageenan (i.m.) and 500 µL of saline (i.p.);
and groups III-V received 100 µL of 3% carrageenan (i.m.) and 500 µL of triptolide (30, 100, and
300 mg/kg, respectively) (i.p.). Muscle tissues were collected from N group (A), C group (B), as well
as 30 mg/kg (C), 100 mg/kg (D), and 300 mg/kg (E) of triptolide-treated groups. (F) Inflammation
score. Data are means ± standard deviation (SD) (n = 6). * p < 0.05 compared with N group; # p < 0.05
compared with C group. Arrows indicate inflammatory cell infiltrates. (Magnification ×100).

4. Discussion

In this study, we demonstrate that the natural product extract triptolide attenuates
pain levels, as well as muscular inflammation and oxidative stress, without affecting hepatic
function in a DOMS rat model. Triptolide decreased muscular proinflammatory cytokine
release and neutrophil infiltration. Triptolide can also reduce muscular oxidative stress,
NO production, and iNOS expression in carrageenan-treated rat muscles. Furthermore,
triptolide inhibits the activation of NF-kB and muscular MPO activity. We suggested
that triptolide could protect carrageenan-induced muscles from oxidative stress-induced
damage and inactivate NF-kB-mediated proinflammatory cytokine expression.

As a pain-producing stimulus, carrageenan, an extract from seaweed, has been widely
used in assessing inflammatory pain in various animal models. It induces gastrocnemius
injury that is recognized as a simplified model of muscle inflammation characterized by
delayed-onset muscle soreness, a reduction in grip force, and pain [30]. In the present study,
we used intramuscular injections of carrageenan to produce muscular inflammation for
mimicking DOMS in rodents.

Inflammation and oxidative stress have been implicated in the pathogenesis and
development of various acute muscle damages [31,32]. Carrageenan has been shown to
elicit a local inflammation when injected into muscles, as evidenced by the accumulation
of leukocytes that began 2 h post-injection and lasted for the next 8 h [33]. In the present
study, triptolide significantly decreased muscular pro-inflammatory cytokine production
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and inflammatory cell filtration 6 h after administration, as well as the lipid hydroperoxide
level, which is a specific biomarker of oxidative stress in carrageenan-induced muscle
damage. Free radical-initiated oxidative stress has been reported to participate in the
pathogenesis of inflammatory disorders from various animal studies [34]. Among the free
radicals, NO, a reactive nitrogen species, is one of the important free radicals participating
in the pathogenesis and development of oxidative stress [35]. NO reacts with superox-
ide anion to form peroxynitrite, a highly cytotoxic free radical [36]. On the other hand,
NO also plays a crucial role in regulating inflammatory response [37]. During inflamma-
tion, activating NF-kB enhances the transcription of pro-inflammatory mediators, such
as NO, TNF-α, and IL-1β [38]. However, NO sustains the activation of NF-kB in chon-
drocytes and macrophages [6,39]. Taken together, we suggest that the activation of NF-kB
could be down-regulated by triptolide-associated iNOS inhibition in carrageenan-induced
muscle inflammation.

Triptolide can inhibit iNOS expression via a reduction in MPO activity. NO reduces the
catalytic activity of iNOS by competing with O2 at the catalytic site of the enzyme during
catalysis, which generates inactive NOS–nitrosyl complexes [40,41]. However, MPO can be
secreted from the primary granules and colocalized with iNOS in activated leukocytes [42],
which up-regulates the catalytic activity of iNOS by preventing feedback inhibition of
NO [43–45]. We showed that triptolide significantly decreased muscular iNOS expression
and MPO activity, suggesting that inhibiting MPO activity is crucial in the protective effect
of triptolide from carrageenan-induced acute muscle damage.

LDH and CPK are the fragments of the myosin heavy chain, both of which cannot cross
the sarcoplasmic membrane barrier [46,47]. Therefore, increased serum concentrations of
the two molecules are indicators of damage to muscle membrane [48]. Although it has been
reported to have hepatoxicity [49], in the present study, triptolide at the therapeutic doses
significantly decreased LDH and CPK serum levels without affecting GOT and GPT. Both
are the biomarkers of hepatic function. We suggest that triptolide might have a clinical
application for the patients with acute muscle inflammation.

5. Conclusions

In conclusion, we have shown that the traditional Chinese herb extract triptolide can at-
tenuate muscle inflammation by inhibiting MPO-associated oxidative stress in carrageenan-
induced DOMS in rats without obvious adverse events.
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